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SUMMARY

The present investigation derives the exact and series solutions for steady thin film flow of a third-
grade fluid. The series solution is constructed by a homotopy analysis method. The obtained solutions
are compared and an excellent agreement between these is achieved. Copyright q 2009 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Over the last four decades, the analytic solutions to flows of non-Newtonian fluids have attracted
the attention of various researchers [1–10]. The literature dealing with such solutions is scarce.
This is in fact due to fairly complicated constitutive equations of non-Newtonian fluids. These
equations involve a number of complex parameters that in general add more number of terms and
increase the order of the governing equations. In spite of all these challenges some researchers in
the field [11–20] are recently engaged in developing the analytic solutions. Very recently, Hayat
et al. [21] provide exact solutions for thin film flow of a third-grade fluid down an inclined plane.
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The purpose of the present communication is to provide the series solution of the problem
considered in [21]. The series solution is given by a homotopy analysis method (HAM) developed
by Liao [22, 23]. Convergence of the obtained series solution is explicitly discussed. In addition,
an exact solution by incorporating typo mistake is included. Finally, the numerical values are
tabulated in order to show the comparison between the exact and homotopy solutions. Like several
previous attempts [24–34], the constructed homotopy solution here yields reliable results.

2. PROBLEM STATEMENT AND EXACT SOLUTION

In this section, we reconsider the thin film flow problem in a third-grade fluid down an incline
plane of inclination � �=0 for the homotopy solution [21]. The surface tension is neglected and
ambient air is taken stationary. Thickness of the thin film is kept uniform. Neglecting the pressure
gradient, dimensionless problem through conservations of mass and momentum is in the form [21]

d2u
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+6�
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)2 d2u
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+1=0 (1)

u(0)=0, u′(1)+2�(u′(1))3=0 (2)
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y=�y∗, u= �2�g sin(�)
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u∗, �∗ = 3�2�2g2 sin2(�)
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and asterisks have been dropped for simplicity. In the above expressions, � is the dynamic viscosity,
g is the gravity, � is the density and � (=�2+�3)>0, �i (i=2,3) is the material constants. It is
pointed out that an exact solution of the problem consisting of Equations (1) and (2) is obtained in
the study [21]. However, the presented exact solution has an error due to typo graphical mistake.
The correct form of the exact solution is
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In the following section, we develop the series solution of the problem.

3. SOLUTION BY HAM

By Equation (1) and the boundary conditions (2), solution can be expressed in the form

u(y)=
+∞∑
m=1

am y
m (4)

where am is a coefficient to be determined later. According to the rule of solution expression
denoted by Equation (4) and the boundary conditions (2), the quadratic approximation

u0(y)=�

(
−y+ y2

2

)
(5)

can be chosen as the initial approximation to u(y), where �<0 is a coefficient to be determined
later. An auxiliary linear operator L is defined by

L[�(y; p)]=
(

�2

�y2

)
�(y; p) (6)

which satisfy

L[C1+C2y]=0 (7)

in which C1 and C2 are constants. Considering Equation (1), the nonlinear operator is given by

N[�(y; p)]= �2�
�y2

+6�

(
��

�y

)2 �2�
�y2

+1 (8)

and the homotopy is constructed as follows:

H[�(y; p)]=(1− p)L[�(y; p)−u0(y)]− h̄ pN[�(y; p)] (9)
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where h̄ �=0 is the convergence-control parameter [22, 23]. Setting H[�(y; p)]=0, the zero-order
deformation problem is

(1− p)L[�(y; p)−u0(y)]= h̄ pN[�(y; p)]

�(0; p)=0, (1− p)

[
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]
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]
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(10)

where p∈[0,1] is an embedding parameter. When the parameter p increases from 0 to 1, the
solution �(y; p) varies from u0(y) to u(y). If this continuous variation is smooth enough, the
Maclaurin’s series with respect to p can be constructed for �(y; p), and further, if this series is
convergent at p=1, we have

u(y) = u0(y)+
+∞∑
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Differentiating Equation (10) and related conditions m times with respect to p, then setting p=0,
and finally dividing by m!, the mth-order deformation problem can be written as

L[um(y)−	mum−1(y)]= h̄ Rm(y) (m=1,2,3, . . .) (12)
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and prime denotes differentiation with respect to y and

	m =
{
0, m�1

1, m>1

The general solution of Equation (12) is of the form

um(y)= ûm(y)+C1+C2y (14)

where ûm(y) is particular solution of Equation (12), C1 and C2 are constants that will be obtained
by conditions (13).

At the N th-order approximation, the analytic solution of Equation (1) is

u(y)≈UN (y)=
N∑
i=0

ui (y) (15)
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Note that the auxiliary parameter h̄ is employed to adjust the convergence region of the series
(15) in the homotopy analysis solution. By h̄-curve, it is straightforward to choose an appropriate
range for h̄ which ensures the convergence of the solution series. As pointed out by Liao [22], the
appropriate region for h̄ is a horizontal line segment.

4. NUMERICAL RESULTS

We use the widely applied symbolic computation software MATHEMATICA to solve Equation
(12) and find that �m(y, h̄) has the following structure:

�n(y, h̄)=
2n+2∑
m=1

�n,m(�, h̄)ym, n�0

For example, we can find that

�1,1=−((1+ h̄)−1)−�(1+ h̄)−10h̄�3

�2,1=−((1+ h̄)2−1)−�(1+ h̄)2−30h̄2�2−20h̄�3−40h̄2�3−300h̄2�5

and so on. The parameter � is used to optimize the initial approximation of u(y). Here, for choosing
� we minimize the absolute residual error of Equation (1) at y=0 for u0(y) and each �. Table I
shows the obtained values for � for some examples.

By means of the so-called h̄-curve, it is straightforward to choose an appropriate range for h̄,
which ensures the convergence of the solution series. As pointed out by Liao [22], the appropriate
region for h̄ is a horizontal line segment. We can investigate the influence of h̄ on the convergence
of u′(0), by plotting the curve of it versus h̄, as shown in Figures 1 and 2 for some examples. We
can see that by decreasing �, the distance of reasonable interval for h̄ increases. By considering
the h̄-curve we can obtain the reasonable interval for h̄ in each case. In addition, by computing
the error of norm 2 for two successive approximation of UN (y), we can obtain the best value for
h̄ for every �. Table I shows the chosen values for h̄ for some examples and Figure 3 shows the
HAM solutions for U20(y) for these values of h̄.

The so-called homotopy-Padé technique (see [22]) is employed, which greatly accelerates the
convergence. The [r,s] homotopy-Padé approximations of u′(0) and u′′(0), according to (11), are

Table I. Results for � and h̄.

� 1
3

2
3 1 5 10 20

� −0.59 −0.5 −0.451 −0.287 −0.22 −0.189
h̄ −0.490 −0.399 −0.352 −0.181 −0.126 −0.097
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Figure 1. The h̄-curves of u′(0) for the 20th-order approximation.

Figure 2. The h̄-curves of u′(0) for the 20th-order approximation.

Figure 3. Dimensionless velocity profiles with different values of � for the 20th-order approximation.
Symbols: exact solution from (3); solid curves: HAM solution.
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Table II. Results for [10,10] homotopy-Padé approach for u′(0) and u′′(0).

� u′(0) u′
Exact(0) u′′(0) u′′

Exact(0)

1
3 0.735139 0.735139 −0.480571 −0.480571
2
3 0.643955 0.643955 −0.376122 −0.376122

1 0.589755 0.589755 −0.323954 −0.323954
5 0.393003 0.393003 −0.177508 −0.177508
10 0.323415 0.323418 −0.137438 −0.137439
20 0.264000 0.264001 −0.106796 −0.106797

formulated by ∑r
k=0�′

k(0, h̄)

1+∑s
k=1�′

r+k+1(0, h̄)
,

∑r
k=0�′′

k (0, h̄)

1+∑s
k=1�′′

r+k+1(0, h̄)

respectively. In many cases, the [r,r ] homotopy-Padé approximation does not depend upon the
auxiliary parameter h̄. Table II shows the [10,10] homotopy-Padé results for u′(0) and u′′(0) for
some examples.

5. FINAL REMARKS

In the present study, both exact and homotopy analysis solutions are first derived and then compared.
It is explicitly shown that an agreement between the derived solutions is excellent. Hence, the
presented analysis tends further confidence and reliability of HAM.
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